Crystal field analysis of the energy level structure of $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}: \mathrm{Cr}^{3+}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2006 J. Phys.: Condens. Matter 185221
(http://iopscience.iop.org/0953-8984/18/22/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 28/05/2010 at 11:08

Please note that terms and conditions apply.

Crystal field analysis of the energy level structure of $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}: \mathrm{Cr}^{3+}$

C Rudowicz ${ }^{1,6}$, M G Brik ${ }^{2,3}$, N M Avram ${ }^{4}$, Y Y Yeung ${ }^{5}$ and P Gnutek 1
${ }^{1}$ Institute of Physics, Szczecin University of Technology, Aleja Piastów 17, 70-310 Szczecin, Poland
${ }^{2}$ Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano, Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan
${ }^{3}$ Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
${ }^{4}$ Department of Physics, West University of Timisoara, Boulevard V. Parvan No. 4, 300223, Timisoara, Romania
${ }^{5}$ Department of Mathematics, Science, Social Sciences and Technology, The Hong Kong Institute of Education, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong SAR, People's Republic of China
E-mail: crudowicz@ps.pl

Received 21 February 2006, in final form 27 April 2006
Published 19 May 2006
Online at stacks.iop.org/JPhysCM/18/5221

Abstract

An analysis of the energy level structure of Cr^{3+} ions in $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$ crystal is performed using the exchange charge model (ECM) together with the crystal field analysis/microscopic spin Hamiltonian (CFA/MSH) computer package. Utilizing the crystal structure data, our approach enables modelling of the crystal field parameters (CFPs) and thus the energy level structure for Cr^{3+} ions at the two crystallographically inequivalent sites in $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$. Using the ECM initial adjustment procedure, the CFPs are calculated in the crystallographic axis system centred at the Cr^{3+} ion at each site. Additionally the CFPs are also calculated using the superposition model (SPM). The ECM and SPM predicted CFP values match very well. Consideration of the symmetry aspects for the soobtained CFP datasets reveals that the latter axis system matches the symmetryadapted axis system related directly to the six $\mathrm{Cr}-\mathrm{F}$ bonds well. Using the ECM predicted CFPs as an input for the CFA/MSH package, the complete energy level schemes are calculated for Cr^{3+} ions at the two sites. Comparison of the theoretical results with the experimental spectroscopic data yields satisfactory agreement. Our results confirm that the actual symmetry at both impurity sites I and II in the $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}: \mathrm{Cr}^{3+}$ system is trigonal $\mathrm{D}_{3 \mathrm{~d}}$. The ECM predicted CFPs may be used as the initial (starting) parameters for simulations and fittings of the energy levels for Cr^{3+} ions in structurally similar hosts.

[^0]
1. Introduction

Crystals doped with the Cr^{3+} ion have been receiving considerable attention since 1960, when the first laser was realized with $\mathrm{Al}_{2} \mathrm{O}_{3}: \mathrm{Cr}^{3+}$ (Maiman 1960). By now, about 20 other host crystals doped with the Cr^{3+} ion have been shown to lase, thus covering the spectral region between 700 and 1100 nm (Kück 2001). Such wide laser tunability is due to the vibronic interaction between the Cr^{3+} optical electrons and the host lattice ions. The $\mathrm{Cr}^{3+}\left(3 \mathrm{~d}^{3}\right)$ ion has a very attractive combination of the spin quartet (e.g., ${ }^{4} \mathrm{~T}_{2 \mathrm{~g}}$) and spin doublet (e.g., ${ }^{2} \mathrm{E}$) states. Depending on the strength of the crystal (ligand) field (CF), two cases may occur (see, e.g., Henderson and Bartram 2000, Powell 1998). The first excited state is the ${ }^{4} \mathrm{~T}_{2 \mathrm{~g}}$ level in a weak CF-this yields the broad emission band; whereas it is the ${ }^{2} \mathrm{E}$ level in a strong CFthis yields the sharp luminescence lines. Very often several types of impurity centre coexist in the same crystal and it is not always possible to unambiguously distinguish them. Thorough spectroscopic measurements and/or model crystal field calculations are needed in such cases to unravel the nature of the impurity centres.

In this paper, based on the crystal field (CF) theory (see, e.g., Mulak and Gajek 2000, Henderson and Bartram 2000, Powell 1998) we theoretically model the crystal field parameters (CFPs) for the two Cr^{3+} octahedral centres at the crystallographically inequivalent sites (I and II) in $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$ crystal. This enables us to analyse the respective energy level schemes (Sosman et al 2000, Torchia et al 2002, 2004). Here we do not impose any a priori restrictions on the local site symmetry of the impurity sites but first compute the CFPs directly from the crystal structure based on the exchange charge model (ECM) (Malkin 1987). Adoption of the crystallographic axis system centred at the Cr^{3+} ion at each of the two sites I and II may, in general, yield apparent monoclinic- or triclinic-like CFP datasets. However, some non-zero CFPs may be computational artefacts. In order to distinguish such cases, considerations of the symmetry aspects involved in the ECM predicted CFP datasets as well as the resulting energy level splittings have to be carried out. Our analysis reveals that for $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}: \mathrm{Cr}^{3+}$ the crystallographic axis system matches the symmetry-adapted axis system related directly to the six Cr-F bonds well. To ensure the reliability of the ECM results, the CFPs are also calculated using the superposition model (SPM) (Newman and Ng 1989, Mulak and Gajek 2000). The ECM and SPM predicted CFP values match very well. The ECM predicted CFP datasets are used as input for calculations of the complete energy level schemes for Cr^{3+} ions at the two sites in $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$. The computations are carried out using the crystal field analysis/microscopic spin Hamiltonian (CFA/MSH) package (Yeung and Rudowicz 1992, 1993, Chang et al 1994, Rudowicz et al 2003, Yang et al 2003, 2004b, 2004a). Comparison of the theoretical energy levels with the experimental optical spectroscopy data yields satisfactory agreement. Our results enable us to confirm that the actual local site symmetry at the impurity sites I and II in the $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}: \mathrm{Cr}^{3+}$ system is trigonal $\mathrm{D}_{3 \mathrm{~d}}$.

To the best of our knowledge, the calculations presented here constitute the first comprehensive CF analysis for the $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}: \mathrm{Cr}^{3+}$ system. We do not take into account the vibronic interaction and the Jahn-Teller effect since the experimental data on the fine structure of the ${ }^{4} \mathrm{~T}_{2 \mathrm{~g}}$ level are scarce for this crystal and our focus is on electronic energy levels. The paper is organized as follows. A brief review of the crystal structure and optical spectroscopy data for the $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$ host is given in section 2. The calculations of the CFPs based on the ECM and the approximate energy level structure as well as those based on the SPM are presented in section 3. The ECM predicted CFPs serve as input for more accurate calculations of the energy level structure using the computer package CFA/MSH presented in section 4. A summary and conclusions are given in section 5 .

Figure 1. Nearest ligands around the Al^{3+} ion in $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$; the Z axis is directed upward; the chromium ion is at the centre of the fluorine octahedron, whereas the three fluorine ions connected by the solid and dashed lines are located above and below the $X Y$ plane, respectively; the positions of atoms are listed in table 1: (a) site I and (b) site II.
(This figure is in colour only in the electronic version)

2. Crystal structure and spectroscopy of $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}: \mathrm{Cr}^{3+}$

$\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$ has a hexagonal perovskite structure with the $R 3 \mathrm{~m}$ space group with lattice parameters $a=0.61811$ and $c=2.9845 \mathrm{~nm}$ (Bordallo et al 2001). The unit cell consists of six formula units with 60 ions. There are two crystallographically distinct positions (i.e., site I and site II) and each can be occupied by three Al^{3+} ions. The Cr^{3+} ions substitute for Al^{3+} ions at the octahedral site I or II, each surrounded by six F^{-}ions (see figures 1(a) and (b), respectively). The Cartesian and angular coordinates of ligands with respect to the crystallographic axes centred at Cr^{3+} ions obtained using the structural data from x-ray and neutron scattering studies (Bordallo et al 2001) are listed in table 1. The data in table 1 indicate that the two Al^{3+} sites have an approximate $\mathrm{D}_{3 \mathrm{~d}}$ site symmetry since the $\mathrm{Al}-\mathrm{F}_{6}$ complexes are very close to a perfect octahedron with the polar angles θ of the nearest neighbour F^{-}ligands differing from the perfect case, i.e., 54.74°, by 1.32° and 0.26° for sites I and II, respectively.

Several experimental spectroscopic studies of Cr^{3+}-doped $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$ crystal have recently been reported (Sosman et al 2000, Torchia et al 2002, 2004, Vrielinck et al 2004, da

Table 1. Cartesian (X, Y, Z) (in nm) and angular (R, θ, ϕ) coordinates of F^{-}ligands in the $\left[\mathrm{Cr}-\mathrm{F}_{6}\right]^{3-}$ cluster in $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$ referred to the (X, Y, Z) coordinate frame centred at $\mathrm{Cr}^{3+}(0,0$, 0) obtained using the structural data of Bordallo et al (2001).

Ion	X	Y	Z	$R(\mathrm{~nm})$	$\Theta(\mathrm{deg})$	$\phi(\mathrm{deg})$
	Site I					
F^{-}	0	-0.145601	0.108039	0.18131	53.42	270.00
$\mathrm{~F}^{-}$	-0.126094	0.072801	0.108039	0.18131	53.42	150.00
$\mathrm{~F}^{-}$	0.126094	0.072801	0.108039	0.18131	53.42	30.00
$\mathrm{~F}^{-}$	0	0.145601	-0.108039	0.18131	126.58	90.00
$\mathrm{~F}^{-}$	0.126094	-0.072801	-0.108039	0.18131	126.58	330.00
$\mathrm{~F}^{-}$	-0.126094	-0.072801	-0.108039	0.18131	126.58	210.00
			Site II			
F^{-}	0	-0.149063	-0.104358	0.18196	125.00	270.00
$\mathrm{~F}^{-}$	0.129092	0.074531	-0.104358	0.18196	125.00	30.00
$\mathrm{~F}^{-}$	-0.129092	0.074531	-0.104358	0.18196	125.00	150.00
$\mathrm{~F}^{-}$	0.129092	-0.074531	0.104358	0.18196	55.00	330.00
$\mathrm{~F}^{-}$	-0.129092	-0.074531	0.104358	0.18196	55.00	210.00
$\mathrm{~F}^{-}$	0	0.149063	0.104358	0.18196	55.00	90.00

Table 2. Selected experimental energy levels (in cm^{-1}) for Cr^{3+} ions in $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$ (Torchia et al 2002; the cross denotes the approximately estimated value) and the energy levels calculated using the initial ECM adjustment procedure (see text). The accuracy of the experimental energies is not provided.

		Calculated (this work)			
O_{h} irreps	Experimental values	Site I	Averaged	Site II	Averaged
${ }^{4} \mathrm{~A}_{2 \mathrm{~g}}\left({ }^{4} \mathrm{~F}\right)$	0	0	0	0	0
		16071		16088	
${ }^{4} \mathrm{~T}_{2 \mathrm{~g}}\left({ }^{4} \mathrm{~F}\right)$	16129	16071	16128	16151	16130
		16243		16151	
		22831		22705	
${ }^{4} \mathrm{~T}_{1 \mathrm{~g}}\left({ }^{4} \mathrm{~F}\right)$	23256	23464	23253	22705	22743
		23464		22820	
		35861		35448	
${ }^{4} \mathrm{~T}_{1 \mathrm{~g}}\left({ }^{4} \mathrm{P}\right)$	$26666{ }^{\dagger}$	35861	36240	35754	35652
		36999		35754	

Fonseca et al 2000), whereas the spectroscopy of the Cr^{3+} ion in cubic hosts was reviewed by Tanner (2004). The optical absorption spectra of $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}: \mathrm{Cr}^{3+}$ are typical for octahedrally coordinated Cr^{3+} ions. Analysis of the available absorption spectra (Torchia et al 2002, 2004) yields the assignment of the experimental energy levels (for the spin-allowed transitions) listed in table 2. However, the ${ }^{4} \mathrm{~A}_{2 \mathrm{~g}}\left({ }^{4} \mathrm{~F}\right)-{ }^{4} \mathrm{~T}_{1 \mathrm{~g}}\left({ }^{4} \mathrm{P}\right)$ transition was not observed due to equipment limitations (Sosman et al 2000). It was only estimated to be at around $375 \mathrm{~nm}\left(26666 \mathrm{~cm}^{-1}\right)$ by solving the Tanabe-Sugano matrices with the experimentally deduced values (listed below) of the cubic CF parameter $D q$ and Racah parameters B and C (Sosman et al 2000). The emission spectra (Sosman et al 2000, Torchia et al 2002, 2004) consist of a unique band centred at $12934 \mathrm{~cm}^{-1}$, which was unambiguously ascribed to the spin-allowed ${ }^{4} \mathrm{~T}_{2 \mathrm{~g}}\left({ }^{4} \mathrm{~F}\right)-{ }^{4} \mathrm{~A}_{2 \mathrm{~g}}\left({ }^{4} \mathrm{~F}\right)$ transition. More precise analysis of the time-resolved emission spectra (Sosman et al 2000)
eliminated two sharp lines at $671 \mathrm{~nm}\left(14903 \mathrm{~cm}^{-1}\right)$ and $701 \mathrm{~nm}\left(14265 \mathrm{~cm}^{-1}\right)$ assigned to the ${ }^{2} \mathrm{E}_{\mathrm{g}}\left({ }^{2} \mathrm{G}\right)-{ }^{4} \mathrm{~A}_{2 \mathrm{~g}}\left({ }^{4} \mathrm{~F}\right)$ spin-forbidden transition. Sosman et al (2000) have identified two Cr^{3+} sites formed by: (I) three fluorine octahedra connected by their faces and (II) an octahedron linked to two type-I sites through the corners (Babel et al 1973, Fargin et al 1990). The parameters ($D q, B, C$) deduced from the experimental data (Sosman et al 2000) are, in cm^{-1}, (1613, 740, 3308) and ($1600,677,3164$) for site I and site II, respectively. Since $D q$ (II) is slightly smaller than $D q(\mathrm{I})$, one can expect that the average $\mathrm{Cr}^{3+}-\mathrm{F}^{-}$distance is slightly larger for site II. This expectation is supported by data in table 1 , yielding this distance as 0.181307 nm (site I) and 0.181963 nm (site II). We note a similar reduction in B and C (due to covalency) as that in $D q$ (due to CF strength); however, the link between the former quantities and the $\mathrm{Cr}^{3+}-\mathrm{F}^{-}$distance is not as straightforward as in the case of Dq. Additionally, analysis of the electron-phonon coupling of the Cr^{3+} ions in the $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$ lattice yields the Stokes shift $S=4.5$ and the effective phonon energy $\hbar \omega=260 \mathrm{~cm}^{-1}$ (Torchia et al 2004).

3. Crystal field theory and the exchange charge model—applications to $\mathrm{Cs}_{2} \mathbf{N a A l F}_{6}: \mathrm{Cr}^{3+}$

The energy levels of an impurity $3 \mathrm{~d}^{N}$ ion in crystals can be described by a Hamiltonian, which includes the free ion terms (see, e.g., Mulak and Gajek 2000, Henderson and Bartram 2000, Powell 1998) and the crystal field Hamiltonian (Malkin 1987):

$$
\begin{equation*}
H_{\mathrm{CF}}=\sum_{p=2,4} \sum_{k=-p}^{p} B_{p}^{k} O_{p}^{k} \tag{1}
\end{equation*}
$$

where the O_{p}^{k} are the linear combinations of the tensor operators acting on the angular parts of the wavefunctions, and the B_{p}^{k} are the CFPs containing all information about the geometry and nature of an impurity centre. Various types of the spherical tensor operators (STOs) and the tesseral tensor operators (TTOs) used in the electron magnetic resonance (EMR) and optical spectroscopy area have been reviewed by Rudowicz $(1987,1988)$ and more recently by Rudowicz and Misra (2001). It turns out that the operators actually meant by Malkin (1987) in equation (1) correspond not to the STOs but, in fact, the extended Stevens (ES) operators O_{k}^{q} defined by Rudowicz (1985a, 1985b). The ES operators belong to the TTO class and comprise in a unified way also the components O_{k}^{q} with negative q. They were introduced as an extension of the usual (or conventional) Stevens operators, which were originally defined only for $q \geqslant 0$ (Stevens 1952); for details and references, see, Rudowicz (1985a, 1985b, 1987, 1988, 2000a). Although the ES operator notation O_{k}^{q} is more widely spread in the literature (Rudowicz 1985a, 1985b, 1987, 1988), below we retain the original Malkin's (1987) notation for the ECM formulation, since the indexed CFPs (i.e., subscript $=$ rank, superscript $=$ component) correspond directly in the two notations. However, the CFPs in equation (1) should not be confused with those in the Wybourne notation $B_{k q}$ (see, e.g., Mulak and Gajek 2000, Rudowicz 1987, 1988), which in some cases are also denoted by the symbol B_{p}^{k} (see, e.g., Burdick and Reid 2004).

Originally the ECM was proposed by Malkin (1987) for the rare earth ions, but later it has also been successfully applied to the transition metal ions in different hosts (see, e.g., Jousseaume et al 2003, Brik and Avram 2003, 2004, Brik et al 2004a, 2004b, 2005, Brik 2005, El-Korashy and Brik 2005). The ECM is an extension of the angular overlap model (AOM) (for a review see, e.g., Schönherr 1997) and it considers both the long- and short-range interactions between an impurity ion and the lattice ions. In the ECM framework, the CFPs can be expressed as a sum of two contributions:

$$
\begin{equation*}
B_{p}^{k}=B_{p, q}^{k}+B_{p, S}^{k} . \tag{2}
\end{equation*}
$$

Table 3. Crystal field parameters (in the extended Stevens notation and in cm^{-1}) calculated in the crystallographic axis system using (i) the initial ECM adjustment procedure and (ii) the superposition model for Cr^{3+} ions at the two sites I and II in $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$; for explanations on the procedures, see text

	Point charge contribution	Exchange charge contribution	Total value	Superposition model (cubic approx.)
Site I				
B_{2}^{0}	-6.8	973.4	966.5	-
B_{4}^{-3}	16403.1	61874.9	78278.0	77556
B_{4}^{0}	-646.1	-2319.7	-2965.8	-2908
B_{2}^{0}	-64.4	-199.3	-263.7	-
B_{4}^{-3}	-16313.9	-63800.4	-80114.3	-79704
B_{4}^{0}	-567.5	-2226.6	-2794.1	-2782

The first term in equation (2) is due to the electrostatic interaction between the 3d electrons of an impurity ion and ligands treated as point charges, whereas the second term, the so-called exchange charge contribution, is proportional to the overlap of the wavefunctions of an impurity ion and ligands, and hence includes all effects of the covalent bond formation and exchange interactions. Taking these effects into account significantly improves the agreement between the calculated energy levels and the experimentally observed ones. The ECM expressions for calculating the contributions to the CFPs in equation (2) derived by Malkin (1987), his equations (2.7) and (2.36), involve for the $3 \mathrm{~d}^{N}$ ions one dimensionless parameter, G. In the ECM initial adjustment procedure the parameter G is determined by fitting or matching the calculated first absorption band position (or in low symmetry cases the averaged position of the split orbital triplet sublevels) to the observed one. The strong advantage of this ECM procedure is that the so-determined parameter G also enables fitting or matching the higher energy levels with the experimental spectra fairly well.

To increase the accuracy of the calculated $B_{p, q}^{k}$ contributions arising from various kinds of long-range electrostatic interactions, we need to consider a large cluster around Cr^{3+} ion consisting of 438 ions, namely, $76 \mathrm{Cs}^{+}, 42 \mathrm{Al}^{3+}, 50 \mathrm{Na}^{+}$and $270 \mathrm{~F}^{-}$ions for site I and 88 $\mathrm{Cs}^{+}, 42 \mathrm{Al}^{3+}, 38 \mathrm{Na}^{+}$and $270 \mathrm{~F}^{-}$ions for site II. Such clusters involve contributions from ions located at distances up to 1.200 nm (site I) and 1.199 nm (site II). The actual $\mathrm{D}_{3 \mathrm{~d}}$ site symmetry around the Cr^{3+} ions doped at the Al^{3+} sites I or II is preserved due to a proper selection of the ions in the large clusters. For the exchange charge contribution $B_{p, S}^{k}$ only the nearest F^{-} ligands are taken into account, since the overlap between an impurity ion and ligands from the coordination spheres further than the first one can be safely neglected. Using the ligand positions (table 1) and the Gaussian radial wavefunctions for the Cr^{3+} and F^{-}ions (Eremin 1989), the initial ECM adjustment procedure yields the CFPs for sites I and II listed in table 3.

A word of caution is necessary here. Our preliminary calculations yielded the CFPs corresponding to symmetry lower than $\mathrm{D}_{3 \mathrm{~d}}$ site symmetry expected from table II of Bordallo et al (2001) for the two Al^{3+} sites I and II. The judicious choice of the ions is crucial to ensure that the selected cluster preserves the Al^{3+} site symmetry properly. It may not be an easy matter for such a large cluster. In fact, any finite truncation of the crystal lattice for this kind of cluster calculation may potentially lead to an erroneous lowering of the symmetry of the crystal field actually experienced by the central transition ion. Initially we have obtained the
fourth-rank CFPs very close to the trigonal CF case since they were dominated by B_{4}^{-3} and B_{4}^{0}; however, the other non-zero fourth-rank CFPs were smaller than the dominant ones by three to four orders of magnitudes. Such computational artefacts may originate from either inclusion in the lattice summations of some distant ions that do not preserve the site symmetry or some rounding-off errors. After a careful rechecking of the ECM calculations we have eliminated some of the small CFPs due to the former reason as well as significantly reduced the still remaining small CFPs due to the latter reason.

The negligible CFPs, i.e., those with the very small magnitudes, still appearing in the ECM results turn out to be due to unavoidable computational artefacts and are omitted from listing in table 3. Another reason for the eligible non-zero, so 'apparent', low symmetry CFPs is discussed in section 4. Table 3 indicates that taking into account the exchange charge contributions in the CFP calculations is indispensable for obtaining reasonable CFP values and hence for reliable calculated energy levels. The previous studies (Brik and Avram 2003, 2004; Brik et al 2004a, 2004b, 2005, 2006a, 2006b; Brik 2005, 2006, El-Korashy and Brik 2005) show that the point charge effects contribute only from 20 to 50% to the total CFP values, whereas the remaining contributions are due to the exchange effects. The final CFPs in table 3 are consistent with the trigonal type I site symmetry (Rudowicz and Qin 2003). Note that by a rotation $\pm 90^{\circ} / 0 z$ one can transform B_{4}^{-3} into $\pm B_{4}^{+3}$, which is more commonly used in the literature, whereas both parameters are admissible for the continuous rotational symmetry, i.e., trigonal type II, cases (Rudowicz and Qin 2003).

In our calculations the CF Hamiltonian was diagonalized using a separate Maple package in the limited subspace of ten wavefunctions belonging to the lowest spin-quartet terms ${ }^{4} \mathrm{~F}$ and ${ }^{4} \mathrm{P}$ of the Cr^{3+} ion. These terms are chosen because the optical transitions between them are spin-allowed and hence are well identifiable in the spectra. The Racah parameter B, which defines the energy gap between the two terms, was estimated as $740 \mathrm{~cm}^{-1}$ (site I) and $667 \mathrm{~cm}^{-1}$ (site II) (Sosman et al 2000). These values reveal the nephelauxetic effect caused by covalency, i.e., the reduction of the free ion value B_{0} to B_{c} in crystals; taking $B_{0}\left(\mathrm{Cr}^{3+}\right)=918 \mathrm{~cm}^{-1}$ (Powell 1998) yields $\beta=B_{c} / B_{0}=0.81$ (site I) and $\beta=B_{c} / B_{0}=0.73$ (site II). A significant nephelauxetic effect for the Cr^{3+} in $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$ indicates a high degree of covalency and serves as a firm justification for including in our calculations both ECM contributions in equation (2). The adjustable parameter G (Malkin 1987) was determined as 4.820 (site I) and 5.007 (site II) by matching the calculated splittings within the ${ }^{4} \mathrm{~F}$ and ${ }^{4} \mathrm{P}$ terms for Cr^{3+} ions with the experimental ones. The calculated energy levels obtained in this approximate way are listed in table 2 together with the experimental ones.

The absorption bands of the Cr^{3+} ion in $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$ are very broad and were not decomposed into individual bands (Sosman et al 2000, Torchia et al 2002, 2004). Hence in table 2 we also provide the averaged values of the energies for the group of states arising from the orbital triplets split by the trigonal symmetry CF components. On the other hand, we assume that the barycentre of the group of levels arising from the same triplet corresponds to the energy of the same triplet in O_{h} symmetry. Table 2 indicates that the energy level scheme calculated for each site agrees fairly well with the experimental spectra (Sosman et al 2000, Torchia et al 2002 , 2004). However, a word of caution should be given about the position of the highest ${ }^{4} \mathrm{~T}_{1 g}$ $\left({ }^{4} \mathrm{P}\right)$ triplet. Its experimental position was not reported by Sosman et al (2000) and Torchia et al (2002, 2004), whereas the expected value given by Sosman et al (2000) seems to be significantly underestimated. The splitting of the orbital triplets in table 2 into orbital doublets and singlets for Cr^{3+} at both sites I and II correctly reflects the overall trigonal symmetry.

In order to reinforce the validity of our ECM model calculations it is useful to carry out an independent modelling of the CFPs using the superposition model (SPM) (Newman and Ng 1989, Mulak and Gajek 2000). Hence we have also carried out SPM calculations of the CFPs
for Cr^{3+} ions in $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$. Since all nearest F^{-}neighbour ligands of Cr^{3+} have the same radial distance, whereas the respective polar angles are quite close to the octahedral values, we may adopt the cubic approximation to match the fourth-rank intrinsic SPM parameter \bar{B}_{4} to the observed energy $E\left({ }^{4} \mathrm{~T}_{2}\right)$ of the ${ }^{4} \mathrm{~T}_{2}$ state. Taking $E\left({ }^{4} \mathrm{~T}_{2}\right)$ as 16129 and $16000 \mathrm{~cm}^{-1}$ from experimental values (Sosman et al 2000), the fitted values of \bar{B}_{4} are obtained as 9574 and $9709 \mathrm{~cm}^{-1}$ for the sites I and II, respectively. Hence, using the SPM formula (Yeung and Newman 1985) the CFP values are obtained within the cubic approximation as listed in the last column of table 3. The results in table 3 indicate that the fourth-rank ECM and SPM predicted CFPs match very well, on average within 1% discrepancy only. Determination of the secondrank CFP within the SPM requires, however, data on other energy levels. Alternatively, the second-rank CFP can be fitted using the conventional trigonal CF parameters v and v^{\prime} (Yeung and Rudowicz 1992). In fact, if the values of v and v^{\prime} are available, then we can also determine all the non-cubic CFPs, i.e., $B_{2}^{\prime 0}=B_{2}^{0}$ and $B_{4}^{\prime 0}$ in the $\mathrm{D}_{3 \mathrm{~d}}$ site symmetry, where the primed CFPs are defined by the relation (using the Malkin (1987) index convention): $B_{q}^{k}=B_{q}^{k}$ (cubic) $+B_{q}^{\prime k}$.

4. Energy levels calculations for $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}: \mathrm{Cr}^{3+}$ using the CFA/MSH computer package

The computer package CFA (Yeung and Rudowicz 1992, 1993, Chang et al 1994) and the improved version CFA/MSH (Rudowicz et al 2003, Yang et al 2003, 2004b, 2004a) enable us to improve the energy level calculations in section 3, which were based on the initial ECM adjustment procedure. The CFA/MSH package allows obtaining the complete energy level scheme for any $3 \mathrm{~d}^{N}$ ion in a crystal field of arbitrarily low symmetry within the whole basis of $3 \mathrm{~d}^{N}$ states, while also taking into account the terms not included by other authors. The energy levels of the impurity ion are obtained by diagonalization of the complete Hamiltonian H within the $3 \mathrm{~d}^{N}$ basis of states in the intermediate CF coupling scheme. H includes the Coulomb interaction $H_{\text {es }}$ (expressed in terms of the Racah parameters B and C or $\mathrm{F}^{(2)}$ and $\mathrm{F}^{(4)}$), Trees correction $H_{\text {Trees }}(\alpha)$, the spin-orbit interaction $H_{\mathrm{SO}}(\xi)$, the CF Hamiltonian H_{CF}, the spin-spin interaction $H_{\text {SS }}$ and the spin-other orbit interaction $H_{\text {Soo }}$ as well as the Zeeman term, which is needed if an external magnetic field is acting upon an impurity ion. For the relevant equations used to calculate the matrix elements of the terms in H we refer to Rudowicz et al (2003). Application of the CFA/MSH package to a number of impurity ions (Rudowicz et al 2003, Yang et al 2003, 2004b, 2004a and references therein) has yielded more accurate results than those based on either approximate calculations within a limited basis of $3 \mathrm{~d}^{N}$ states or perturbation methods and thus more reliable agreement with the experimental results.

The CFPs listed in table 3 were used as input for the CFA/MSH package to obtain the complete energy level scheme for Cr^{3+} (I) and Cr^{3+} (II) ions in $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$ given in table 4; in this way, a connection between ECM and CFA/MSH is established. Due to the trigonal CF component only the orbital triplets are split, whereas the doublets remain degenerate. From the point of view of the descent in symmetry method it is worthwhile to compare the calculated Cr^{3+} energy levels with those for the ideal octahedral CF labelled by the irreducible representations of the O_{h} group. The latter energy levels calculated using the experimental sets of $D q, B$, and C reported by Sosman et al (2000) are also listed in table 4. Comparison of the approximate energy levels (table 2) and the more accurate ones (table 4) indicates their consistency, thus confirming the validity of both approaches.

We note that the sequence of the orbital doublets and singlets arising from the orbital triplets for site I is inverted, in all but one case, as compared with that for site II. This fact is due to the combined effect of the second-rank trigonal CFP B_{2}^{0}, which is of opposite signs for

Table 4. The energy levels (in cm^{-1}) calculated using the CFA/MSH package for the Cr^{3+} ions at octahedral sites in $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$: (i) within the cubic CF approximation and (ii) based on the theoretical CFPs obtained from the ECM calculations; the orbital doublet states are indicated by an asterisk.

O_{h} irrep. repres.	Energy			
	Site I		Site II	
	(i) Cubic CF	(ii) ECM	(i) Cubic CF	(ii) ECM
${ }^{4} \mathrm{~A}_{2 \mathrm{~g}}$	0	0	0	
${ }^{2} \mathrm{Eg}_{\mathrm{g}}$	15309	15296	14467	14407*
${ }^{2} \mathrm{~T}_{1 \mathrm{~g}}$	15981	$\begin{aligned} & 15915^{*} \\ & 16130 \end{aligned}$	15066	$\begin{aligned} & 14958 \\ & 15010^{*} \end{aligned}$
${ }^{4} \mathrm{~T}_{2 \mathrm{~g}}$	16130	$\begin{aligned} & 16072^{*} \\ & 16244 \end{aligned}$	16000	$\begin{aligned} & 16088 \\ & 16151^{*} \end{aligned}$
${ }^{2} \mathrm{~T}_{2 \mathrm{~g}}$	22744	$\begin{aligned} & 22411 \\ & 22906^{*} \end{aligned}$	21612	$\begin{aligned} & 21515^{*} \\ & 21627 \end{aligned}$
${ }^{4} \mathrm{~T}_{1 \mathrm{~g}}$	23254	$\begin{aligned} & 22831 \\ & 23464^{*} \end{aligned}$	22671	$\begin{aligned} & 22705^{*} \\ & 22820 \end{aligned}$
${ }^{2} \mathrm{~A}_{1 \mathrm{~g}}$	29014	29011	28200	28290
${ }^{2} \mathrm{~T}_{2 \mathrm{~g}}$	31311	$\begin{aligned} & 31236^{*} \\ & 31469 \end{aligned}$	30332	$\begin{aligned} & 30353 \\ & 30421^{*} \end{aligned}$
${ }^{2} \mathrm{~T}_{1 \mathrm{~g}}$	31800	$\begin{aligned} & 31642 \\ & 31851^{*} \end{aligned}$	30748	$\begin{aligned} & 30775^{*} \\ & 30845 \end{aligned}$
${ }^{2} \mathrm{Eg}_{\mathrm{g}}$	33603	33617*	32451	32498*
${ }^{4} \mathrm{~T}_{1 \mathrm{~g}}$	36236	$\begin{aligned} & 35862^{*} \\ & 37000 \end{aligned}$	35484	$\begin{aligned} & 35428 \\ & 35754^{*} \end{aligned}$
${ }^{2} \mathrm{~T}_{1 \mathrm{~g}}$	36816	$\begin{aligned} & 36678 \\ & 36880^{*} \end{aligned}$	35430	$\begin{aligned} & 35448^{*} \\ & 35455 \end{aligned}$
${ }^{2} \mathrm{~T}_{2 \mathrm{~g}}$	42250	$\begin{aligned} & 42150^{*} \\ & 42332 \end{aligned}$	40329	$\begin{aligned} & 40233 \\ & 40241^{*} \end{aligned}$
${ }^{2} \mathrm{~A}_{2 \mathrm{~g}}$	43814	43785	41740	41628
${ }^{2} \mathrm{~T}_{1 \mathrm{~g}}$	47512	$\begin{aligned} & 47391^{*} \\ & 47766 \end{aligned}$	46356	$\begin{aligned} & 46471 \\ & 46576^{*} \end{aligned}$
${ }^{2} \mathrm{~T}_{2 \mathrm{~g}}$	49392	$\begin{aligned} & 49136 \\ & 49549^{*} \end{aligned}$	48024	$\begin{aligned} & 48145^{*} \\ & 48247 \end{aligned}$
${ }^{2} \mathrm{Eg}_{\mathrm{g}}$	52101	$52128 *$	49973	49 929*
${ }^{2} \mathrm{~T}_{1 \mathrm{~g}}$	54991	$\begin{aligned} & 54974^{*} \\ & 55032 \end{aligned}$	53095	$\begin{aligned} & 53154^{*} \\ & 53155 \end{aligned}$
${ }^{2} \mathrm{~T}_{2 \mathrm{~g}}$	70914	$\begin{aligned} & 70536^{*} \\ & 71385 \end{aligned}$	67948	$\begin{aligned} & 67753 \\ & 67945^{*} \end{aligned}$
${ }^{2} \mathrm{E}_{\mathrm{g}}$	71784	71982*	69614	69 806*

the two sites, and the non-cubic part of the fourth-rank CFP B_{4}^{-3}. It is worthwhile to consider the transformations properties of CFPs. A rotation by $\pm 90^{\circ}$ around the z-axis transforms B_{4}^{-3} into $\pm B_{4}^{+3}$, and B_{4}^{+3} into $\mp B_{4}^{-3}$, while leaving the parameters B_{k}^{0} invariant. Similarly, a rotation $\pm 180^{\circ} / 0 z$ transforms B_{4}^{-3} into $-B_{4}^{-3}$, and B_{4}^{+3} into $-B_{4}^{+3}$. Since each transformed CFP set is physically equivalent, an arbitrary change of the sign of B_{4}^{-3} or alternative usage of $\pm B_{4}^{+3}$
yields the same calculated energy levels. Concerning the exceptional case, i.e., the ${ }^{2} \mathrm{~T}_{1 \mathrm{~g}}$ site II data in table 4, in order to verify that no misprint has been made in assigning the asterisk for this case, we have rechecked our calculations. Swapping the asterisk would yield the required consistency, i.e., it might appear at 53155 (lower number) rather than at 53154 (upper number). However, the present results are confirmed. It appears that the assignment of the irreps by the CFA program may be computationally doubtful for the near-degenerate cases. We believe that this apparent inconsistency is acceptable since the physical results are still correct as the energy of the doublet and singlet states is nearly the same in this case.

A word of caution should be given here about the meaning of the CFPs calculated in the crystallographic axis system. The minimal set predicted by group theory of the nonzero symbolic CFPs, i.e., the CFPs used to express the CF Hamiltonian, must be referred to an appropriate symmetry-adapted axis system (Rudowicz and Qin 2004). The maximum of 14 non-zero CFPs is required for $3 \mathrm{~d}^{N}$ ions at triclinic sites, whereas the higher the local site symmetry the smaller the number of such non-zero CFPs. However, in general, the orientation of the crystallographic axes may differ from the symmetry-adapted axes for a given local site symmetry. Then the number of the non-zero theoretical CFPs calculated in the crystallographic axis system may be greater than the number of the non-zero CFPs predicted by group theory in a given symmetry-adapted axis system. The former CFP dataset constitutes an 'apparent' lower symmetry case, which originates due the choice of the axes which do not coincide with the symmetry-adapted axes. In order to consider the inherent low symmetry effects involved in such cases, proper transformations and standardization (Rudowicz and Bramley 1985, Rudowicz 1986, 1991, Rudowicz et al 2000) of such CFP datasets must be carried out. To facilitate such computations a novel computer program 3DD based on the idea of diagonalization of the second-rank CFPs like in the case of the zero field splitting (ZFS) parameters (Rudowicz and Qin 2004) has been developed (Rudowicz and Gnutek 2006). Note that incorrect relations between the ZFS parameters in the ES operator notation and the conventional ones for orthorhombic and lower symmetry that have appeared in literature have recently been clarified by Rudowicz (2000a; see therein for references). The program 3DD (Rudowicz and Gnutek 2006) enables finding the principal CFP values and the orientation of the principal axes, whereas the extended computer package CST (Rudowicz 2000b, Rudowicz and Jian 2002) facilitates the corresponding transformations of the fourthrank CFPs. Illustrative examples of the actual and apparent low symmetry CFP datasets will be considered in forthcoming papers.

In the present case, since the non-zero CFPs in table 3 correlate well with the expectations based on the group theory, the adopted crystallographic axis system turns out to correspond directly to the symmetry-adapted axis system related to the central-ion-ligand bonds. The respective axes have been also indicated in figures 1(a) and (b). Analysis of the nearest ligand coordinates in table 1 shows that the local symmetry for both sites is nearly $\mathrm{D}_{3 \mathrm{~d}}$. The trigonal contributions from the coordination spheres taken into account in our calculations, which lower the approximate cubic site symmetry, are responsible for the partial removal of the degeneracy of the energy levels for both sites I and II.

The reliability of our ECM predicted CFPs in table 3 can be further tested by comparison with data taken from relevant literature. In table 5 we provide a comparative listing of the free ion parameters and the CFPs in the Wybourne notation (see, e.g., Mulak and Gajek 2000, Rudowicz 1987) for Cr^{3+} ions at trigonal sites in various compounds. To facilitate crosscomparison we have converted the respective parameters to the notations most often used in the literature. In order to gauge the 'strength' of the crystal field it is useful to calculate the rotational invariants S_{k} or equivalently the norms N_{k} of the CF (ZFS) parameters (for definitions and references, see, Rudowicz and Qin 2003, 2006). Here we provide only the definition of S_{k}

Table 5. Comparative listing of the free ion parameters: Racah parameters $\left(\mathrm{F}^{(2)}, \mathrm{F}^{\mathrm{d}}\right.$), Trees correction (α), and spin-orbit coupling constant (ξ), and the crystal field parameters: conventional cubic CFP $(D q)$, trigonal CFPs ($B_{k q}$) in the Wybourne notation (in cm^{-1}), and the respective rotational invariants S_{k} for Cr^{3+} ions at trigonal sites in various compounds.

	Set	$F^{\text {b }}$	$F^{\text {d }}$	α	ξ	Dq	B_{20}	S_{2}	B_{40}	B_{43}	S_{4}	Reference
$\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$	I	59416	41681	-	-	1613	1933	864	-23726	26463	14770	This work
	II	54831	39866	-	-	1600	-527	236	-22353	-27084	14783	This work
$\mathrm{Cs}_{2} \mathrm{NaGaF}_{6}$	$1^{\text {a }}$	56315	40068	-	-	1535	-	-	-	-	-	da Fonseca et al (1999)
	$2^{\text {a }}$	58835	41517	-	-	1605	-	-	-	-	-	
$\mathrm{LiCaAlF}_{6}$	$1^{\text {a }}$	55244	38934	-	218	1476	-	-	-	-	-	Avram and Brik (2003)
$\mathrm{KZnF}{ }_{3}$	$1{ }^{\text {b }}$	59570	41958	-	243	1527	2749	1229	-21 127	-25657	13996	Yang (2002)
	$2^{\text {b }}$						-3831	1713	-20292	-26006	14002	
	$3^{\text {b }}$						-1082	484	-20040	-26111	14005	
RbCdF_{3}	$1^{\text {a }}$	62230	41454	-	240	1420	-	-	-	-	-	Yang (2000)
$\mathrm{MgAl}_{2} \mathrm{O}_{4}$	1	56700	40320	-	250	-	4608	2061	-30625	-28415	16841	Wood et al (1968) ${ }^{\text {e }}$
$\mathrm{Al}_{2} \mathrm{O}_{3}$	$1^{\text {c }}$	54589	38875	-	217.5	1775.4	1045	467	-26367	-29708	16534	Ma et al (1999)
	2	53690	39312	-	180	-	-1123	502	-22350	31538	16629	Macfarlane (1963) ${ }^{\text {e }}$
	3	52605	37800	70	-	-	-1123	502	22400	-31622	16672	Fairbank et al (1975)*
	4			-	-	-	1425	637	-23510	-31166	16651	McClure (1962) ${ }^{\text {e }}$
LiNbO_{3}	$1^{\text {d }}$	47320	36666	-	-	1532	-3380	1512	-21335	-25683	14041	Jia et al (1990)
$\mathrm{ZnAl}_{2} \mathrm{O}_{4}$	1	56700	40320	-	250	-	4608	2061	-30625	-28415	16841	Mikenda (1981) ${ }^{\mathrm{e}}$, Wood et al (1968) ${ }^{\text {e }}$
	2	56557	40370	-	250	-	5321	2380	-32312	-28500	17219	Nie et al (1990) ${ }^{\text {e }}$
$\mathrm{Y}_{3} \mathrm{Al}_{5} \mathrm{O}_{12}$	1	52724	38380	132	252	1605	1187	531	-21574	27224	14711	Morrison et al (1991)
$\mathrm{Be}_{3} \mathrm{Al}_{2}\left(\mathrm{SiO}_{3}\right)_{6}$	1	55510	37296	70	-	-	-5453	2439	-21123	28211	15048	Fairbank et al (1975) ${ }^{\text {e }}$
	2	58940	37296	-	225	-	-7657	3424	-19690	28359	14893	Macfarlane (1970) ${ }^{\text {e }}$

${ }^{\text {a }}$ Original parameters: B, C.
${ }^{\mathrm{b}}$ Original parameters: B, C, v, v^{\prime}; contributions relevant for a given set: \#1: (i), \#2: (ii), and \#3: (i) + (ii), where: (i) K^{+}-vacancy and (ii) lattice distortion.
${ }^{\text {c }}$ Original parameters: $B_{0}, C_{0}, K_{0}, K_{0}^{\prime}$
Original parameters: B, C, v, v^{\prime}
${ }^{\text {e }}$ As quoted by Morrison (1992).
for the Wybourne notation (see, e.g., Rudowicz and Qin 2006):

$$
\begin{equation*}
\left(S_{k}\right)^{2}=\frac{1}{2 k+1} \sum_{q}\left|B_{k q}\right|^{2} . \tag{3}
\end{equation*}
$$

The corresponding expressions in the ES notation are provided, for example, by Rudowicz and Qin (2003). Automatic calculation of the quantities S_{k} for all major tensor operator notations is provided in the package CST (Rudowicz 2000b, Rudowicz and Jian 2002). The quantities S_{k} are the second-order rank-k rotational invariants and they provide an additional check of compatibility and reliability of experimentally fitted CFPs as well as the consistency of the transformed CFPs expressed in different axis systems by various authors (see, e.g., Rudowicz and Qin 2003, 2004). Table 5 reveals that the values of CFPs and S_{k} calculated by us fall well within the respective ranges observed and/or calculated by other authors. Hence our literature search enables us additionally to increase the reliability of our results. The closeness of S_{4} for sites I and II indicates similar strength of the fourth-rank CF terms for both sites, whereas much smaller B_{20} and thus S_{2} for site II than for site I may be explained as follows. Since the second-rank CF terms are identically zero in the perfect octahedral site symmetry, in general, the second-order rank-2 CF invariant S_{2} for lower symmetry cases is a measure of the deviation of the site symmetry from the octahedral one (Yeung and Newman 1985, 1986a). The polar angles in table 1 indicate that the $\mathrm{Al}-\mathrm{F}_{6}$ (II) complex is very close to a perfect octahedron. Hence the second-rank CFP B_{20} (II) and thus the invariant S_{2} (II) become much smaller in value. This result is also consistent with the experimental finding (Vrielinck et al 2004) that the Cr^{3+} ions with the ground state ${ }^{4} \mathrm{~A}_{2}$ have much greater ZFS at site I than at site II. This is due to the fact that the non-cubic second-rank CF term usually makes the dominant contribution to the ground state ZFS for Cr^{3+} ions (Yeung and Newman 1986b).

5. Summary and conclusions

Utilizing the crystal structure data, our approach enables modelling of the crystal field parameters (CFPs) and thus the energy level structure for $3 \mathrm{~d}^{N}$ ions at arbitrary symmetry sites in crystals. Application to Cr^{3+} ions at the two crystallographically inequivalent sites I and II in $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$ is presented in this paper. Our modelling is based on the exchange charge model (ECM), which has only one adjustable parameter G arising from the overlap effects between wavefunctions of the central ion and ligands. Using the initial ECM adjustment procedure, the CFPs are calculated in the crystallographic axis system centred at the Cr^{3+} ion at each site. This yields large CFPs of trigonal character and a few very small monoclinic- and triclinic-like CFPs datasets, which are identified as computational artefacts. After a careful check of the ECM calculations we have eliminated the very small CFPs. Our results indicate that taking into account the exchange charge contributions in the CFP calculations is indispensable for obtaining reasonable CFP values and thus for reliable modelling of the energy levels schemes for Cr^{3+} ions in $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$. To ensure the reliability of the ECM results, we have also (i) calculated the CFPs using the superposition model (SPM) and (ii) carried out an extensive comparison with data taken from relevant literature for Cr^{3+} ions at trigonal sites in various compounds. The SPM and ECM predicted fourth-rank CFPs show a near perfect agreement, whereas both CFP datasets fall well within the respective ranges observed and/or calculated by other authors.

Computations of the energy level structures of the octahedrally coordinated Cr^{3+} ions in $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$ are carried out using the diagonalization of the CF Hamiltonian within a limited basis of states for the approximate calculations in the initial ECM adjustment procedure, whereas the crystal field analysis/microscopic spin Hamiltonian (CFA/MSH) computer package
is used for the detailed computations within the full basis of states of the $3 \mathrm{~d}^{3}$ configuration. Comparison of the approximate energy levels and the more accurate ones indicates satisfactory consistency, thus confirming the validity of both approaches. Our calculations for both Cr^{3+} crystallographic sites yield the theoretical energies of the orbital singlet and doublet states arising for the trigonal local site symmetry, which agree well with the experimental data. Provided that an extended range of the experimental energies becomes available, our theoretical energies may be helpful for identification of the transitions in the spectral range above $27000 \mathrm{~cm}^{-1}$.

Preliminary calculations of the spin Hamiltonian parameters for Cr^{3+} ions at the two sites in $\mathrm{Cs}_{2} \mathrm{NaAlF}_{6}$ are in progress, utilizing the MSH module within the package CFA/MSH. These considerations are aimed at providing additional verification of the present approach to modelling of the spectroscopic properties. Further applications of the approach presented here to various $3 \mathrm{~d}^{N}$ ions at low symmetry sites in technologically important crystals will be reported elsewhere (Rudowicz et al 2006).

Acknowledgments

M G Brik appreciates financial support from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) in a project on computational materials science unit at Kyoto University and the 'Open Research Centre' Project for Private Universities-matching fund subsidy from MEXT 2004-2008. P Gnutek acknowledges gratefully the PhD scholarship (under the CZR supervision) from the Institute of Physics, SUT.

References

Avram C N and Brik M G 2003 J. Lumin. 102/103 81
Babel D, Haegele R, Pausewang G and Wall F 1973 Mater. Res. Bull. 81371
Bordallo H N, Henning R W, Sosman L P, da Fonseca R J M, Tavares A D Jr, Hanif K M and Strouse G F 2001
J. Chem. Phys. 1154300

Brik M G 2005 Z. Naturf. a 60437
Brik M G 2006 J. Phys. Chem. Solids 67738
Brik M G and Avram C N 2003 J. Lumin. 102/103 283
Brik M G and Avram N M 2004 Z. Naturf. a 59799
Brik M G, Avram C N and Tanaka I 2004 Phys. Status Solidi b 2412501
Brik M G, Avram N M and Avram C N 2004b Solid State Commun. 132831
Brik M G, Avram N M, Avram C N and Tanaka I 2005 Eur. Phys. J. Appl. Phys. 29239
Brik M G, Avram N M and Avram C N 2006a Spectrochim. Acta A 63759
Brik M G, Avram N M and Avram C N 2006b Physica B 37143
Burdick G W and Reid M F 2004 Mol. Phys. 1021141
Chang Y M, Rudowicz C and Yeung Y Y 1994 Comput. Phys. 8583
da Fonseca R J M, Sosman L P, Tavares A D and Bordallo H N 2000 J. Fluoresc. 10375
da Fonseca R J M, Tavares A D Jr, Silva P S, Abritta T and Khaidukov N M 1999 Solid State Commun. 110519
El-Korashy A and Brik M G 2005 Solid State Commun. 135298
Eremin M V 1989 Spectroscopy of Crystals ed A A Kaplyanskii (Leningrad: Nauka) (in Russian)
Fairbank W M, Klauminzer G K and Schawlow A L 1975 Phys. Rev. B 1160
Fargin E, Lestienne B and Dance J M 1990 Solid State Commun. 75769
Henderson B and Bartram R H 2000 Crystal-Field Engineering of Solid-State Laser Materials (Cambridge: Cambridge University Press)
Jia W, Liu H, Knutson R and Yen W M 1990 Phys. Rev. B 4110906
Jousseaume C, Vivien D, Kahn-Harari A and Malkin B Z 2003 Opt. Mater. 24143
Kück S 2001 Appl. Phys. B 72515
Ma D, Zhang H, Liu Y, Chen J and Ma N 1999 J. Phys. Chem. Solids 60463
Macfarlane R M 1963 J. Chem. Phys. 393118

Macfarlane R M 1970 Phys. Rev. B 1989
Maiman T H 1960 Nature 187493
Malkin B Z 1987 Spectroscopy of Solids Containing Rare-Earth Ions ed A A Kaplyanskii and B M Macfarlane (Amsterdam: North-Holland) p 33
McClure D S 1962 J. Chem. Phys. 362757
Mikenda W 1981 J. Lumin. 2685
Morrison C A, Gruber J B and Hills M E 1991 Chem. Phys. 154437
Morrison C A 1992 Crystal Fields for Transition-Metal Ions in Laser Host Materials (Berlin: Springer)
Mulak J and Gajek Z 2000 The Effective Crystal Field Potential (Amsterdam: Elsevier)
Newman D J and Ng B 1989 Rep. Prog. Phys. 52699
Nie W, Michel-Calendini F M, Linares C, Boulen G and Daul C 1990 J. Lumin. 46177
Powell R C 1998 Physics of Solid-State Laser Materials (Berlin: Springer)
Rudowicz C 1985a J. Phys. C: Solid State Phys. 181415
Rudowicz C 1985b J. Phys. C: Solid State Phys. 183837 (corrigendum)
Rudowicz C 1986 J. Chem. Phys. 845045
Rudowicz C 1987 Magn. Reson. Rev. 131
Rudowicz C 1988 Magn. Reson. Rev. 13335 (corrigendum)
Rudowicz C 1991 Mol. Phys. 741159
Rudowicz C 2000a J. Phys.: Condens. Matter 12 L417
Rudowicz C 2000b Crystal Field Handbook ed D J Newman and B Ng (Cambridge: Cambridge University Press) p 259
Rudowicz C and Bramley R 1985 J. Chem. Phys. 835192
Rudowicz C and Gnutek P 2006 in preparation
Rudowicz C and Jian Q 2002 Comput. Chem. 26149
Rudowicz C and Misra S K 2001 Appl. Spectrosc. Rev. 3611
Rudowicz C and Qin J 2003 Phys. Rev. B 67174420
Rudowicz C and Qin J 2004 J. Lumin. 11039
Rudowicz C and Qin J 2006 J. Phys. Conf. Ser. at press
Rudowicz C, Chua M and Reid M F 2000 Physica B 291327
Rudowicz C, Yang Z Y, Yeung Y Y and Qin J 2003 J. Phys. Chem. Solids 641419
Rudowicz C, Brik M G, Avram N M, Yeung Y Y and Gnutek P 2006 in preparation
Schönherr T 1997 Top. Curr. Chem. 19187
Sosman L P, Tavares A D Jr, da Fonseca R J M, Abritta T and Khaidukov N M 2000 Solid State Commun. 114661
Stevens K W H 1952 Proc. Phys. Soc. 65209
Tanner P A 2004 Chem. Phys. Lett. 388488
Torchia G A, Schinca D, Khaidukov N M and Tocho J O 2002 Opt. Mater. 20301
Torchia G A, Martinez-Matos O, Khaidukov N M and Tocho J O 2004 Solid State Commun. 130159
Vrielinck H, Loncke F, Callens F, Matthys P and Khaidukov N M 2004 Phys. Rev. B 70144111
Wood D L, Imbusch G F, Macfarlane R M, Kisliuk P and Larkin D M 1968 J. Chem. Phys. 485255
Yang Z-Y 2000 Appl. Magn. Reson. 18455
Yang Z 2002 J. Magn. Magn. Mater. 238200
Yang Z Y, Rudowicz C and Yeung Y Y 2003 J. Phys. Chem. Solids 64887
Yang Z Y, Hao Y, Rudowicz C and Yeung Y Y 2004a J. Phys.: Condens. Matter 163481
Yang Z Y, Rudowicz C and Yeung Y Y 2004b Physica B 348151
Yeung Y Y and Newman D J 1985 J. Chem. Phys. 823747
Yeung Y Y and Newman D J 1986a J. Chem. Phys. 844470
Yeung Y Y and Newman D J 1986b Phys. Rev. B 342258
Yeung Y Y and Rudowicz C 1992 Comput. Chem. 16207
Yeung Y Y and Rudowicz C 1993 J. Comput. Phys. 109150

[^0]: 6 Author to whom any correspondence should be addressed.

